
r

i

|

|
i

26323

SOFTWARE ENGINEERING LABORATORY SERIES SEL-83-002

MEASURES AND METRICS
FOR SOFTWARE DEVELOPMENT

MARCH 1984
/

/

/
/

/I
/

/
/

/

/

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-83-002

MEASURES AND METRICS
FOR SOFTWARE DEVELOPMENT

MARCH 1984

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion/Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (i) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-83/6061.

The contributors to this document include

David Card (Computer Sciences Corporation)

Frank McGarry (Goddard Space Flight Center)

Jerry Page (Computer Sciences Corporation)

Victor Church (Computer Sciences Corporation)

Leon Jordan (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582

NASA/GSFC

Greenbelt, Md. 20771

9274

ii

ABSTRACT

This document reports the evaluations of and recommendations

for the use of software development measures based on the

practical and analytical experience of the Software Engi-

neering Laboratory. It describes the basic concepts of

measurement and a system of classification for measures.

The principal classes of measures defined are explicit,

analytic, and subjective. Some of the major software meas-

urement schemes appearing in the literature are reviewed.

The applications of specific measures in a production envi-

ronment are explained. These applications include predic-

tion ano plannihg, review and assessment, and evaluation and

selection.

9274

iii

TABLE OF CONTENTS

Section 1 - Introduction i-i

i.i Document Organization 1-2

1.2 Concepts of Measurement 1-3

1.3 Software Engineering Laboratory 1-7

Section 2 - Surve[of Measurement Approaches 2-1

2.1 Explicit Measures 2-1

2.2 Analytic Measures 2-3

2.2.1

2.2.2

2.2.3

Program Size 2-3
Control Structure 2-7

Data Structure 2-8

2.3 Subjective Measures. 2-10

Section 3 - Summary of SEL Research 3-1

3.1 Explicit Measures 3-1

3.2 Analytic Measures 3-4

3.3 Subjective Measures 3-7

Section 4 - Applications of Measures 4-1

4.1 Prediction and Planning 4-3

4.2 Review and Assessment 4-12

4.3 Evaluation and Selection 4-22

Section 5 - Conclusions 5-1

References

Bibliography of SEL Literature

Index of Measures

9274

iv

LIST OF ILLUSTRATIONS

Figure

i-i

2-1

2-2

2-3

2-4

4-1

4-2

4-3

4-4

4-5

Software Development Model 1-4

Sample FORTRAN Program 2-5

Tabulation of Operators and Operands 2-6

Graphic Representation of Cyclomatic

Complexity 2-8

Graphic Representation of Reference Span . . . 2-9

Role of Measures in Software Development

Management 4-2
Nominal Software Production Pattern 4-8

Nominal Computer Utilization Pattern 4-9
Nominal Software Change Pattern 4-11

Nominal Productivity Pattern 4-21

LIST OF TABLES

Table

i-i

1-2

2-1

2-2

2-3

2-4

3-1

4-1

4-2

4-3

Software Life Cycle Definitions 1-5

Software Development Environment 1-8

Typical Explicit Measures 2-2

Software Science Relationships 2-4

Definition of Software Quality Factors 2-11

Levels of Module Strength and Coupling 2-13

Comparison of Walston-Felix Data With SEL

Data_ 3-2

Software Relationship'Equations. 3-3

Predicting Effort and Errors Using Size

and Complexity Metrics 3-5
Internal Validation of Halstead Measures . . . 3-5

Summary of Factor Analyses of Classes of
Measures 3-8

Basic Estimation Parameters 4-4

Life Cycle Effort/Schedule Model 4-6

Measures for Assessment 4-13

9274

v

SECTION 1 - INTRODUCTION

Effective software development management depends on the ac-

curate measurement of project attributes. This document

reviews the state of the art of practical software measure-

ment, which is still, to some extent, an art rather than a

science. Substantial research is in progress, however, and

innovations have been rapid in this vital area. Major im-

provements in both the collection and interpretation of

measures are expected in the next few years. However, cer-

tain lessons can be applied now.

Many different measures have been proposed in the literature

(Reference i). (No distinction is made in this document be-

tween the meaning of "measure" and that of "metric.") Dur-

ing the past 6 years, the Software Engineering Laboratory

(SEL) has made a major effort to understand, verify, and

apply these measures to the software development process, as

well as to develop new ones and refine existing ones, This

document presents some evaluations of and recommenda£ions

for the application of software development measures and

metrics, based on the practical and analytical experience of

the SEL.

Measures appeal to the software engineering researcher and

software development manager as potential means of defining,

explaining, and predicting software quality characteristics,

especially productivity, reliability, and maintainability.

The software manager in particular needs to be able to de-

termine the quality of a software project at every point in

its life cycle. Questions that measures can answer include

the following:

• Is this software project on schedule?

• How many errors can be expected?

9274

i-i

• Is this methodology effective?

• How good is this product?

The reader will obtain an understanding of the theory of

software measures and their application to questions such as

these. This document is intended to serve as a reference

for the technical manager of software development projects

who desires to monitor and review ongoing development, pre-

dict cost and quality, and evaluate alternative development

techniques. Another document (Reference 2) discusses the

difficulties and priorities of collecting measures and data

in general.

This document presents the general concepts of software

measurement, reviews the work done to date, and then demon-

strates the application of these concepts in a production

environment. Its scope will be expanded as the SEL learns

more about measures. In particular, a major effort is under

way to identify measures that can be applied early in the

development process (i.e., during requirements and design).

The results of these studies will move us closer to the

final goal of putting the academics of measures into the

hands of the software practitioner.

i.i DOCUMENT ORGANIZATION

This document consists of four major sections. Section 1

introduces some concepts of software measurement and de-

scribes the source of the analyzed data and the basis of the

practical experience. References 2 and 3 present more de-

tailed explanations of this material.

Section 2 explains a classification scheme for software

measures. Organizing the available measures in this manner

facilitates their systematic consideration. Some commonly

used software measures are explained within the context of

9274

1-2

the classification scheme. The following classes of

measures are defined by this scheme:

• Explicit

• Analytic

• Subjective

Section 3 summarizes the efforts of the SEL to evaluate the

available software measures. Studies of each of the three

classes of measuresare described.

Section 4 demonstrates the application of measures to soft-

ware development management for each phase of the software

life cycle. The following applications of measures are

considered:

• Prediction (for planning)

• Review (for assessment)

• Evaluation (for selection)

Section 5 reiterates the major conclusions and indicates the

direction of current SEL research.

1.2 CONCEPTS OF MEASUREMENT

Measurement is the process of assigning a number or state to

represent a physical quantity or quality. The need to meas-

ure the quantity and quality of developed software is

self-evident. Measures of productivity, reliability, main-

tainability, and complexity, for example, are vital to soft-

ware development planning and management.

A large number of measures have been proposed by re-

searchers, not all of which are equally useful in practice.

This document is an attempt to organize the available meas-

ures in a rational manner and to identify those that have

been employed successfully in a production environment.

9274

1-3

Reference 2 explains a three-dimensional scheme for the

classification of software measures. These dimensions are

development component, level of detail, and measurement

method. The first two are useful in planning and implement-

ing a program of data collection. The last is essential to

the interpretation and application of software measures,

which is the focus of this document.

The first dimension of classification is the development

component. The software development activity can be divided

into discrete components, as shown in Figure i-i. The com-

ponents included in this model are the following:

• Problem--The software problem as described in the

requirements specification and constraints

• Environment--Characteristics of the development in-

stallation and personnel

• Product--The software and documentation produced by

the development effort

• Process--The procedures, techniques, and method-

ologies employed in developing the product

ENVIRONMENT AND

PROCESS

i %.

/ %

/ _
f %.

J PROCESS PHASES 1 iREQUIREMENTS ' TATION TESTING TESTINGANALYSTS DESIGN OESIGN

Figure 1-1. Software Development Model

9274

i-4

Measurements can be classified based on the components

(i.e., problem, environment, product, process) to which they

apply. Examples of problem measures include the number and

complexity of requirements. Programming language and devel-

opment computer are characteristics of the environment.
Product measures include lines of code and pages of documen-

tation. Team size and methodology use are examples of meas-

ures that characterize the process.

The software development process is the component most

easily manipulated by managers and must be carefully moni-
tored. Simply measuring a software development project at

its conclusion is inadequate for most purposes. Measure-
ments must be made throughout the life of a software proj-

ect. Figure i-i shows the decomposition of the process into

seven life cycle phases. Although this is the basic life

cycle definition used by the SEL, a simpler sequence con-
sisting of design, implementation, and testing is also used

in this document as a heuristic device. Table i-i compares

the two life cycle definitions.

Table i-i. Software Life Cycle Definitions

(Based on SEL Experience)

Detailed Life Cycle

Phase

Requirements Analysis

Preliminary Design

Detailed Design

Implementation

System Testing

Acceptance Testing

Percent of

Schedule

Simplified Life Cycle

Percent of

Phase Schedule

s
i0 Design 30

15 i

40 - Implementation 40

20 I Testing 30i0

9274

1-5

Another dimension of classification is level of detail (or

resolution). Measurements can be performed at several

levels of detail:

• Project--High-level summary

• Component--Discrete project parts, such as subsys-

tems, modules, COMMON blocks, etc.

• Event--Occasional or periodic occurrences, such as

changes, computer runs, etc.

The level of detail of measures collected depends on the

manager's perspective and cost constraints. As discussed in

Section 4, these measures can provide useful feedback to

managers and developers. (Reference 2 presents a more de-

tailed discussion of cost considerations.)

The final and most important dimension (from the perspective

of this document) is method of measurement. Measurements

can be obtained by several different methods:

• Explicit--Simple numeric counts, averages, and

other directly obtained indicators (e.g., lines of

code and errors per module)

• Analytic--Complex measures based on assumptions

about the relationships among software features

(e.g., Halstead length and cyclomatic complexity)

• Subjective--Ratings of quality and use arrived at

by high-level review and comparison (e.g., trace-

ability and completeness)

The specific measurement method employed implies certain

beliefs about the nature of the software development proc-

ess. This dimension of classification (method of measure-

ment) is the basis for the organization of Sections 2 and 3

9274

1-6

of this document. Section 2 reviews some of the major meas-

urement proposals of each type. Section 3 summarizes the

results of SEL research in each of these areas.

1.3 SOFTWARE ENGINEERING LABORATORY

The SEL is a cooperative effort of Goddard Space Flight Cen-

ter (GSFC), Computer Sciences Corporation (CSC), and the

University of Maryland (UM). The SEL collects and analyzes

data from software development projects that support flight

dynamics activities at GSFC. More than 40 projects have

been monitored by the SEL during its 7-year life. SEL prin-

cipals also participate in the management of these proj-

ects. The recommendations presented in this document are

based on this analytical and practical experience. Refer-

ence 3 describes the SEL and its activities in more detail.

The general class of spacecraft flight dynamics software

studied by the SEL includes applications to support attitude

determination, attitude control, maneuver planning, orbit

adjustment, and mission analysis. The attitude systems, in

particular, form a large and homogeneous group of software

that has been studied extensively. Table 1-2 summarizes the

major characteristics of the software developed in this

environment.

Measures have been collected and analyzed regularly from

these projects. The bibliography included in this document

contains numerous reports of the results of these analyses.

Reference 4 describes a recent study incorporating more than

600 measures of special interest to software development

managers.

9274

1-7

Table i- 2. Software Development Environment

Type of Software: Scientific, ground-based, interactive
graphic with moderate reliability and response requirements

Languages: 85 percent FORTRAN, 15 percent assembler macros
Machines: IBM S/360 and 4341, batch with TSO

Process
Characteristics

Duration (months)

Effort (staff-years)
Size (i000 LOC)

Developed a 57.0
Delivered b 62.0

Staff (full-time equivalent)
Average 5.4
Peak i0.0
Individuals 14

Application Experience (years)

Managers 5.8

Technical Staff 4.0

Overall Experience (years)

Managers i0.0

Technical Staff 8.5

Average High LOW

15.6 20.5 12.9

8.0 11.5 2.4

iii. 3 21.5

112.0 32.8

6.0 1.9

13.9 3.8

17 7

6.5 5.0

5.0 2.9

14.0 8.4

ii.0 7.0

aNew lines of code plus 20 percent of reused lines of code.

bTotal lines of code.

9274

1-8

SECTION 2 - SURVEY OF MEASUREMENT APPROACHES

A classification of the available software development meas-

ures is a prerequisite for any systematic evaluation of

them. Many of the measures that have been proposed are

similar to each other. A classification scheme provides a

mechanism for avoiding unnecessary duplication while ensur-

ing full coverage of all important software development

characteristics. The following classes of measures will be

discussed here:

• Explicit

• Analytiq

• Subjective

The following sections define these classes, show their

logical relationship to each other, and outline some of the

major measurement proposals. The reader can consult the

references for more detailed explanations.

2.1 EXPLICIT MEASURES

The class of explicit measures contains the easiest to

understand and most widely used measures. This class in-

cludes counts and ratios directly determined from source

code, staffing records, computer usage logs, and documenta-

tion. Values of these measures are fixed and unambiguous

for a given project or component, although there is some

variability in nomenclature. (Reference 5 provides an ex-

tensive set of definitions for these measures as well as

other elements of software engineering.) The following are

the most important explicit measures:

• Developed lines of code--All newly developed lines

of code plus a fraction of reused lines of code; a

measure of size

9274

2-1

• Lines of code per staff hour--Lines of code devel-

oped for each staff hour expended; a measure of

productivity

• Errors per thousand lines of code--Errors detected

for every thousand lines of code developed; a meas-

ure of reliability

These are the most widely used measures of software size and

"quality," probably because not enough is yet understood

about other measures. The exact hours, lines, and errors

counted must be defined locally. Table 2-1 lists some other

measures typical of this class. Walston and Felix (Refer-

ence 6) studied the relationship of many such measures to

productivity and reliability.

Table 2-1. Typical Explicit Measures

Component

Problem

Environment

Product

Process

Measure

Number of requirements

Number of interfaces

Number of functions

Programming language

Development machine

Programmer experience

Lines of code

Number of modules

Pages of documentation

Staff level

Development time

Methodology use

Although explicit measures are easily determined, they have

several limitations: they are usually available only after

the software development activity is complete; their scope

is limited to the areas of size, productivity, and reliabil-

ity; they have little explanatory power; and they are not

sensitive to the specific objectives of a software

2-2

9274

development project. The next two subsections discuss some

alternatives and complements to explicit measures that at-

tempt to counter these weaknesses.

2.2 ANALYTIC MEASURES

Analytic measures are based on some assumption or hypothesis

about the nature of software and the software development

process. They are intended to be sensitive to defined

"critical" properties. Examples include cyclomatic complex-

ity, program length, and reference span (see following sec-

tions). The value of these measures depends on the validity

of the underlying assumption or hypothesis. Validation of

these hypotheses.is an active area of software engineering

research. Analytic measures generally deal with one of

three basic software properties (Reference 7): program

size, control structure, or data structure. Each of these

properties has been studied with several different concep-

tual approaches. Although researchers frequently disagree

on the importance of each property and the calculation of

specific measures of them, some analytic approaches to meas-

ures have become well established. These approaches are re-

viewed in the following sections.

2.2.1 PROGRAM SIZE

One of the most comprehensive theories and sets of measures

for software development was proposed by Halstead (Refer-

ence 8). This "software science" is a set of relationships

between the size of a program and other software qualities.

The essential premise of software science is that any pro-

gramming task consists of selecting and arranging a finite

number of program components (operators and operands). The

number of these components then determines the implementa-

tion effort required and the number of errors produced. An

operator is a symbol denoting an operation, function, or

action. An operand is a symbol representing a data item or

2-3

9274

target of the action of an operator.

measures are defined by Halstead :

Q

The following basic

Number of unique operators (nl), e.g., +, -, IF

Number of unique operands (n2), e.g., X, Y, I, 200

Total number of appearances of operators (N I)

Total number of appearances of operands (N 2)

Figure 2-1 shows the source listing of a simple FORTRAN pro-

gram. Its component operators and operands are identified

in Figure 2-2. (This identification was done by the Source

Analyzer Program described in Reference 9.) The values of

the basic Halstead measures for the sample program are

n I = 16, n 2 = 21, N 1 = 59, and N 2 = 50. These measures

can be combined to calculatesome important software proper-

ties, as shown in Table 2-2.

Table 2-2. Software Science Relationships

Quality

Vocabulary (n)

Length (N)

Volume (V)

Level (L)

Effort (E)

Faults (B)

Equation

n = n I + n 2

N = N 1 + N 2

V = N log 2 n

L = V/V*

E = V/L

B = V/S*

NOTES: V* is the minimum volume represented by a built-in

function performing the task of the entire program.

S* is the mean number of mental discriminations

(decisions) between errors (S* _ 3000).

Ostensibly, software science provides equations for estimat-

ing the cost (effort) and reliability (faults) of developed

software (see Table 2-2). These equations are based on as-

sumptions about the mental process of programming. Although

2-4

9274

100 SUBROUTINE TDIST CN, X, Y, DIST)

200C

300 INTEGER

400 REAL

500C

600 INTEGER

700 REAL

800 LOGICAL

900C

1000 REAL

1100C

1200 XL = 0.0

1300 YL = 0.0

1400 DIST = 0.0

1500C

1600 DO 200 I=i, N

1700 DX = X(I) - XL

1800 X2 : DX*DX

1900 DY : Y(1) - YL

2000 Y2 = DY::DY

2100C

2200 R2 = X2 + Y2

2300 CALL VERIFY (R2, ERR)

2400C
2500

2600

2700
2800 100

2900
3000

3100

3200

3300
3400C

3500

3600

3700

3800

3900C

4000

4100C

4200

_300

4400

4500

4600C

W700C
4800 400 CONTINUE

4900 CALL ABORT

5000C

5100 END

PASSED

N

X(N), Y(N), DIST
LOCAL

I, MSGNUM, K

XL, YL, DX, DY, X2, Y2, R2, R

ERR
GLOBAL

SQRT
INITIALIZE

FOR ALL POINTS

CALC./CHECK SEPARATION

OBTAIN SEPARATION

IF (ERR) THEN
K = I - 1

WRITE (6, i00, ERR=3003 K, I

FORMAl" (IX, WERROR, POINTS ', 13, ' AND ', 13,

* ' TOO CLOSE')

R = 0.0

ELSE

R = SORT (R23

END I F

DIST = DIST + R

XL = X(I)

YL = Y(1)

200 CONTINUE

RETURN

300 CONTINUE

MSGNUM : 27

CALL ERRMSG (MSGNUM, ::%00)

RETURN

ACCUMULATE

NORMAL RETURN

ERROR WRITING MESSAGE

UNABLE TO WRITE ANY

MESSAGES, ABORT RUN

9274

Figure 2-1.

_J
,i

/

Sample FORTRAN Program

2-5

i-

7,
/-

Z

..J

u.I
.J

u.

s"

u'}

&/I
(.J

I-
urJ

I-

I.--
u3

i,i
-I

r,,
O

sr

O

0.

uJ
N
)-
_1
,,(
Z

UJ
U
,.v

O X

..I
(.w ul,

a .,t-

O

00
o4 _J

0

<

W
el
0

,<
I.U

-I
,<
T

..10
I!

.d
','Z
Z,,_

-4- • .

o,i ,", o

-O'
I-- t.u
_.._Z

u.IO
_Z

:¢ ,., ° °

0'0'
:f. UJ t_t
:: V • •

o_oo

wO
.Jx

II • °

o_c) o

_J

uJ

.J
uJ
r_

I!
0

_J

.J
uJ

w

.J
Lu

o

_0

0

_Z

v_

o

uJ

v_
u.O
-

oo

t_
a
0_
0

)-

I-

0

u_

w

C3
u.l
(.)
0

o.

0

,...4

>-

uJ

o
o

o,.,_

w

II •
n,,I-
a_-J
,,,<

u')

uJ
b_

Z

)-

x
>-_

Z
o_
o_

u':

Z

e,, t--
U..I ou')

0 Z,_,_

U3

u_

v)-uj

_X)"

r_

0

0

r_

0

4-4
0

0
.,-I

,--I

I

2-6

some early studies supported the validity of software

science (Reference i0), recent work has challenged this

theory on both empirical (Reference ii) and theoretical

(Reference 12) grounds.

2.2.2 CONTROL STRUCTURE

Another well-developed concept of measurement, cyclomatic

complexity, was introduced by McCabe (Reference 13) in an

attempt to quantify control flow complexity. The original

objectives of the measure were to determine the number of

paths through a program that must be tested to ensure com-

plete coverage and to rate the difficulty of understanding a

program. However, many researchers have attempted to relate

cyclomatic complexity directly to software reliability.

The basic measure is the cyclomatic number derived from the

graphic representation of a program's control flow. Fig-

ure 2-3 is an example of a graphic representation of the

control flow of the program shown in Figure 2-1. The

cyclomatic number of the program represented in the figure

is equal to the number of disjoint regions defined by the

edges of the graph, or the number of binary decisions plus

one. The following is a more general formula:

V(G) = e - n + 2p

where V(G) = cyclomatic number of graph G

e = number of edges

n = number of nodes

p = number of unconnected parts

The cyclomatic number iof the graph shown in Figure 2-3 is 4

(4 = i0 - 8 + 2 x i). McCabe suggested that any program (or

module) with a cyclomatic number greater than 10 is too com-

plex. Another measurement scheme similarly based on counts

of decisions was proposed by Gilb (Reference 14).

9274

2-7

Figure 2-3.

R3

Graphic Representation of Cyclomatic Complexity

(of Program in Figure 2-I)

McCabe's theory was extended by Myers (Reference 15) to in-

clude decisions based on compound conditions. Although

early research (Reference 16) and theoretical consideration

(Reference 17) gave favorable indications, more recent study

has not supported the value of cyclomatic complexity as an

indicator of development effort or reliability. Evangelist

(Reference 18) suggested that the measure could be reformu-

lated to more accurately reflect control flow. Hansen (Ref-

erence 19) has proposed a promising measure incorporating

both cyclomatic complexity and software science measures

that has yet to be evaluated.

2.2.3 DATA STRUCTURE

The reference span approach to measurement is based on the

location of data references within a program. The span of

2-8

9274

reference of a data item is the number of statements between

successive references to that data item (Figure 2-4). For

example, the reference span of variable DIST in the sample

program (Figure 2-1) is 16. Elshoff (Reference 20) has

shown that the reference span measure varies widely. He

also noted its implications for program complexity and read-

ability. Long distances (reference spans) between occur-

rences of a variable make a program difficult to understand

and maintain. According to this theory, minimizing the

length of reference spans minimizes program complexity.

STATEMENT SPA_I OF
NUMBER S:I'ATEMENT DATA REFERENCE

1

2

3 X=Y

DOO OOO

27

28 Y=Z

OOO 000

SPAN OF
Y= 25

SPAN OF
Z = 38

SPAN OF
X = 63

65 ,.

ss z=x -
-- ,04

O't

OOO

Figure 2-4. Graphic Representation of Reference Span

Other approaches to measuring data structures and data flow

have been developed recently (Reference 21). They attempt

to consider the effects of how data are used and structured

within a program as well as their volume. The relevant

measures are, however, frequently difficult to compute, al-

though useful simplifications can be made. For example,

2-9

9274

Henry and Kafura (Reference 22) have developed some rela-

tively straightforward measures based on concepts of in-

formation flow and system connectivity.

2.3 SUBJECTIVE MEASURES

Subjective measures are so called because they are relative

ratings of quality rather than absolute measurements. The

explicit and analytic measures just discussed are absolute

measures of software properties. Absolute measures are de-

ficient in that their scope is limited to tangible quanti-

ties. Consequently, they are not sensitive to the specific

quality objectives of a software development project. In

contrast, subjective measures are often used to compare the

actual realization of a project with its ideal or target

qualities.

The greater scope of subjective measures relative to the

measures discussed in Sections 2.1 and 2.2 is demonstrated

in Table 2-3. The subjective measures identified in the

table were proposed by McCall (Reference 23). Most of these

measures have no explicit or analytic counterparts. These

measures are intended to be used to evaluate the performance

of a software development project relative to specified

quality targets. The McCall scheme is based on combining

independent evaluations of multiple criteria to produce a

value for each measure (or factor, as they are referred to

by McCall).

Although McCall's is the best-known measurement scheme of

this type, comparable schemes have been proposed by Gilb

(Reference 14) and the SEL (Reference 4). The McCall meas-

ures have been extended for use early in the software life

cycle (Reference 24), during maintenance (Reference 25), and

with distributed systems (Reference 26). Values of sub-

jective measures are, however, difficult to determine

2-10

9274

Table 2-3. Definition of Software Quality Factors a

Factor

Correctness

Reliability

Efficiency

Integrity

Usability

Maintainability

Testability

Flexibility

Portability

Reusability

Interoperability

Definition

Extent to which a program satisfies its

specifications and fulfills the user's

mission objectives

Extant to which a program can be expected

to perform its intended function with re-

quired precision

Amount of computing resources and code

required by a program to perform a func-
tion

Extent to which access to software or

data by unauthorized persons can be con-

trolled

Effort required to learn, operate, pre-

pare input, and interpret output of a

program

Effort required to locate and fix an error

in an operational program

Effort required to test a program to en-

sure that it performs its intended func-

tion

Effort required to modify an operational

program

Effort required to transfer a program

from one hardware configuration and/or

software system environment to another

Extent to which a program can be used in

other applications; related to the pack-

aging and scope of the functions that

programs perform

Effort required to couple one system with

another

aFrom Reference 23, Table 3.1-1.

9274

2-11

consistently. Thus projects, especially those from differ-
ent environments, cannot easily be compared.

Another subjective measurement scheme and corresponding de-

velopment methodology proposed by Myers (Reference 27) in-

corporates measures of both data and control structure.

This theory is based on the concept of program modularity.
Levels of "module strength" and "module coupling" are de-

fined that correspond to degrees of control cohesion and

data independence. Table 2-4 explains the levels of module

strength and coupling.

Module strength is a measure of "singleness of purpose." A

module performing only a single function has the greatest

strength. A module performing several unrelated functions

has low strength. Module coupling is a measure of "depend-

ence" between modules. Two modules linked only through data

passed in a calling sequence have the weakest coupling. The

use of control flags and COMMON blocks, for example, in-

creases the level of coupling. Myers suggested that soft-

ware quality could be improved by maximizing module strength

and minimizing module coupling. The determination of the

actual strength and coupling of a module is, however, sub-

jective, although some progress has recently been made in

quantifying these concepts (Reference 28).

9274

2-12

Table 2-4. Levels of Module Strength and Coupling

Level a

Strength b Functional

Informational

Communicational

P{ocedural

Coupling c

Classical

Logical
Coincidental

Data

Stamp

Control
External

Common

Content

Description

Single specific function

Independent functions on com-
mon data structure

Multiple sequential functions
related by data

Multiple sequential functions
related by problem
Multiple sequential functions
Set of related functions

No clearly defined function

Share simple data items

Share common (local) data
structure

Control elements passed
Reference to global data item

Reference to global data
structure (COMMON)
Direct reference to contents
of other module

aOrdered from best to worst.

bwithin a module.

CBetween modules.

9274

2-13

SECTION 3 - SUMMARY OF SEL RESEARCH

Although extensive research has been done in the area of

software measures, much of it has been inconclusive. Many

studies have had serious methodological flaws, and some im-

portant ideas have not been tested at all (Reference 29).

Thus far, no measures have emerged that are clearly superior

to lines of code, hours of effort, and errors detected. No

other measures are widely used because none have been demon-

strated to be effective in a production environment. This

is partly due to the lack of relevant data. For example,

there is no a priori reason to assume that a cyclomatic com-

plexity of i0 is intrinsically superior to a cyclomatic com-

plexity of 12. However, few software engineering data bases

contain the detailed product information necessary to

determine whether or not this is true.

Any evaluation of a measure must weigh the information it

provides about productivity, reliability, and/or maintain-

ability against its cost of collection. The SEL is conduct-

ing a continuing program of evaluating and refining existing

measures and developing new ones. Reference 30 summarizes

the results of SEL activities in this area. This section

highlights some of the major findings about each of the

classes of measures defined in the previous section.

3.1 EXPLICIT MEASURES

Early SEL experiments (Reference 31) with explicit measures

attempted to verify the work of Walston and Felix (Refer-

ence 6). Although similar results were obtained, some

important differences were noted. Table 3-1 compares the

Walston-Felix data with SEL data. Differences between the

data bases reflect the differences between the environments

studied. Both data bases, however, showed consistent

9274

3-1

Table 3-1. Comparison of Walston-Felix Data With SEL Data a

Measures

Total Source Lines (thousands)

Percent of Lines Not Delivered

Source Lines per Staff-Month

Documentation (pages) per Thousand

Lines

Total Effort (staff-months)

Average Staffing Level

Duration (months)

Distribution of Effort

Manager

Programmer
Other

Errors per Thousand Lines

aFrom Reference 6, Table A-9.

bLines are developed lines of code.

CRescaled to sum to 100 percent

Walston- SEL
Felix Median Median

20 49 b

5 0

274 601 b

69 26

67 96

6 5

ii 15

22 c 19

73 c 68

5c 13

1.4 0.8

9274

3-2

relationships among lines of code, pages of documentation,

project duration, staff size, and programmer hours.

Table 3-2 shows the numerical relationships among these

measures identified by the SEL and Walston-Felix. It should

be noted that the coefficients and exponents in each pair of

equations are of the same magnitude. This close agreement

obtained from the analysis of two very different sets of

data suggests that these relationships among explicit meas-

ures do indeed reflect basic properties of the software de-

velopment process.

Table 3-2. Software Relationship Equations a

Measure

Effort (E)

(staff-months)

Documentation (D)

(pages)

Duration (T)

(months)

Staff size (S)

(average persons)

Software Engineering

Laboratory

Equation b CD c

E = 1.4L 0-93 0.93

D = 30L 0"90 0.92

T -- 4.6L 0"26 0.55

S -- 0.24E 0"73 0.89

Walston-Felix

Equation b CD c

E = 5.2L 0-91 0.64

D = 49L I'01 0.62

T = 4.1L 0"36 0.41

S = 0.54E 0"60 0.79

aFrom Reference 31, Table 1.

bin following equations L is total lines of code.

CCoefficient of determination (or r2).

The SEL has achieved some success in applying explicit meas-

ures to cost estimation. Analysis of the relationships

among productivity, lines of code, and other cost factors

provided the empirical basis of the SEL Meta-Model for soft-

ware cost (Reference 32). One of the liabilities of a model

based on lines of code is that this quantity is known

9274

3-3

accurately only after software development is complete.

Reasonable early estimates can, however, be made based on

other explicit measures, such as the number of subsystems or

modules (Reference 33). In summary_ the SEL has found ex-

plicit measures to be very effective for some software de-

velopment characteristics.

3.2 ANALYTIC MEASURES

SEL studies of analytic measures have focused on program

size and control structure. Measures of data structure are

still in the early stages of investigation. The Halstead

and McCabe measures (see Section 2.2) have been carefully

examined by the SEL (References 34 and 35). Table 3-3 sum-

marizes the relationship between several measures and pro-

ductivity and reliability. As shown in the table, neither

cyclomatic complexity nor Halstead effort was the best pre-

dictor of either productivity or reliability.

A recent SEL study (Reference 36) showed that higher corre-

lations for cyclomatic complexity and Halstead effort could

be obtained after carefully screening the data to ensure

sample consistency. This suggests that the minute level of

detail of these measures (operators, decisions, etc.) makes

them sensitive to extraneous variations in the data collec-

tion process and programming style. They are thus unsuit-

able for use in production environments where extensive data

verification is not possible.

Another approach to validating (Halstead) software science

measures has been to show that they are internally consist-

ent (Reference 34). For example, good agreement between the

program length as predicted by software science and the ac-

tual program length has been taken as evidence of the valid-

ity of software science. Table 3-4 gives results from this

type of analysis.

9274

3-4

Table 3-3. Predicting Effort and Errors using Size and

Complexity Metrics a

Measure

Calls

Cyclomatic Complexity

Calls + Jumps

Lines of Code

Executable Statements

Revisions

Halstead Effort

Correlation

Effort Errors

0.80 0.57

0.74 0.56

0.80 O.58

0.76 0.56

0.74 0.55

0.71 0.67

0.66 0.54

aFrom Reference 30, page 18, based on a study of SEL data.

Table 3-4. Internal Validation of Halstead Measures a

b
Relationship Large

A

N % N 0.79

V _ V* 0.52

L _ L 0.71

E _ E 0.61

Correlation

Small c

0.83

0.50

0.62

0.42

aFrom Reference 30, page 20, based on a study of SEL data.

bModules > 50 lines of code.

CModules < 50 lines of code.

9274

3-5

n

The correlations reported in the table cannot, however, be

taken at face value. For any given program studied, values

A and B can be found so that the total number of operators

and operands can be expressed as functions of the number of

unique operators and operands. Consider the following

equations:

N 1 = n I A (i)

N 2 - n 2 B (2)

N = n I A + n 2 B (3)

and, according to Halstead (Reference 8):

/k

N = n I log 2 n I + n 2 log 2 n 2 (4)

A

where N = predicted program length

N = actual program length (N 1 + N 2)

N 1 = total number of operators

N 2 = total number of operands

n I = number of unique operators

n 2 = number of unique operands

A, B = constants

A

Comparing Equations (3) and (4) shows that N and N are both

functions of n I and n 2. Because the coefficients A, B,

log2n I, and log2n 2 are all always positive, a positive cor-
A

relation must exist between N and N. The correlations shown

in Table 3-4 may not be significant after accounting for the

fact that all these quantities are functions of n I and n 2.
/

3-6

9274

McCabe measures have also been the focus of extensive inves-

tigation by the SEL. Although McCabe made no such claims

for his theory, others have attempted to relate cyclomatic

complexity to error rate. As reported in Section 2.2.2,
this has been only partially successful. The SEL (Refer-

ence 37) has found evidence that cyclomatic complexity and

error rate may be uncorrelated or even negatively corre-

lated--not a very satisfying conclusion. The position of

the SEL is that, although analytic measures seem promising

and are intellectually appealing, their practical value has

not been demonstrated.

3.3 SUBJECTIVE MEASURES

The evaluation of software quality is, at present, a matter

of the subjective interpretation of the results of a soft-

ware development project relative to its functional require-

ments. This can be done best by managers and senior

personnel associated with the project. Discussions among

these individuals produce a consensus rating of the project

relative to projects previously undertaken by the organiza-

tion. Checklists and questionnaires can be employed to

formalize the rating process.

Subjective measures offer the flexibility of easy tailoring

to any situation. Hundreds of such measures have been sug-

gested (see Section 2.3); however, the selection of appro-

priate measures is essential to systematizing the subjective

process. Because each environment and application is

unique, a single set of measures may not be appropriate to

all.

The SEL conducted an exhaustive study to determine the meas-

ures that best characterize the flight dynamics environment

(Reference 4). Over 600 measures were examined, from which

38 key properties (factors) were identified. Table 3-5 sum-

marizes these results. The factors defined by the analysis

9274

3-7

Table 3-5. Summary of Factor Analyses of Classes of
Measures a

Class of Measures

Software Engineering
Practices

Development Team

Ability

Difficulty of Project

Process and Product

Characteristics

Development Team

Background

Resource Model

Parameters

Additional Detail

No. of No. of
Measures Factors

Percent of

Variance

Explained

43 5 80

ll0 6 82

54 5 74

47 5 85

144 5 86

73 6 73

137 6 83

aFrom Reference 4, Table 4-2, based on a study of 20 flight

dynamics projects from the SEL data base.

9274

3-8

contained about 80 percent of the information (variance) of

the original measures. This study showed that a concise set

of subjective measures can be devised that effectively char-

acterizes a given software development environment. One

conclusion of this study was that project size influenced

almost all aspects of software development, including staff-

ing, methodology, and stability. Subsequent research ef-

forts will define the relationship of these characteristics

to the quality of the final software product. The general

conclusion of the SEL is that r although subjective measures

lack the precision and conciseness of explicit and analytic

measures r they are an effective means of characterizing

software quality_

9274

3-9

SECTION 4 - APPLICATIONS OF MEASURES

Measures play many roles in the management of a software

development project. These roles are illustrated at a high

level in Figure 4-1. Measures provide the basis for manage-

ment decisions about project control. The general roles of

measures include the following:

• Predicting and planning--Estimating cost and qual-

ity to establish a baseline or development plan

• Reviewing and assessing--Measuring performance and

quality during development

• Evaluating and selecting the best technology for an

ongoing or future project

The goal of measurement is to detect significant departures

from historical patterns. The regular and consistent ap-

plication of measures will enable the software development

manager to prevent or correct problems quickly and effi-

ciently. This section describes the uses of some specific

measures. More general guidelines for software development

management are given in Reference 38.

The intent of this section is to demonstrate how measures

can be used to answer some of the most common management

questions. The recommenoations presented here are not in-

tended to constitute a complete or final guide to the uses

of software measures; substantial improvements in this area

will be forthcoming as additional research is performed.

However, as Gilb (Reference 14) suggests, the currently

available (if imperfect) measures should be used until

others are developed. These specific measures have been

used successfully in a software production environment.

4-1

9274

PROJECT
MANAGEMENT

Figure

I-_GJ_E_-- -- -- "1
I I

I i
I I
I I
I I

, I
Immm I t_l, i m m mm abram ,ram,|

PROJECT
DEVELOPMENT

CONTROL

4-1, Role of Measures in Software Development

Management

4-2

4.1 PREDICTION AND PLANNING

Effective software development management depends on reli-

able measurement and accurate estimation. The manager must

produce initial estimates of system size, cost, and com-

pletion date. These estimates are incorporated in a de-

velopment/management plan. Progress toward completion is

measured against the plan. Plans and estimates must be

updated periodically to reflect actual work accomplished.

This section shows how measures can be used to answer the

manager's questions about the ultimate size, development

cost, schedule, maintenance cost, and reliability of a soft-

ware system. More detailed explanations of planning and

estimation are presented in References 38 and 39,

respectively.

How big will this sys-
tem be when finished?

Number or subsystems
Number of modules

Lines of code per subsystem

Lines of code per module

Lines of code developed to date

Current growth rate

An initial estimate of system size can be made by multiply-

ing the number of subsystems by the average number of lines

of code per subsystem. Once the high-level design is com-

plete, an estimate can be made similarly by using the number

of modules and the average lines of code per module.

Table 4-1 lists values for these measures derived from SEL

data. During implementation, the lines of code developed to

date and the current growth rate can be combined to project

the size of the completed system.

How much will this system

cost to develop?

Number or subsystems

Number of modules

Hours per subsystem

Hours per module

Percent of reused code

Expenditures to date

Life cycle effort model

9274

4-3

Table 4-1. Basic Estimation Parameters a

Requirements Analysis b

Size: Lines of code per subsystem

Cost: Hours per subsystem

Schedule: Weeks per subsystem per person

Preliminary Design b

Size: Lines of code per module

Cost: Hours per module

Schedule: Weeks per module per person

b
Detailed Design

Size: Relative weight of reused d code

Cost: Hours per developed line of code

Schedule: Weeks per developed modules per

person

Implementation

Size: Percent growth during testing

Cost: Testing percent of total effort

Schedule: Testing percent of total schedule

System Testinq

Cost: Acceptance testing percent of
total effort

Schedule: Acceptance testing percent of
total schedule

Nominal Value c

7500

1850

45

125

3O

0.75

0.2

0.3

1.0

l0

25

30

5

i0

aAt end of each phase, based on SEL data.

bEstimates of totals, not required to complete.

CBased on data collected in the flight dynamics

environment.

dDoes not include extensively modified reused module.

9274

4-4

An initial estimate of system cost can be made by multiply-

ing the number of subsystems by the average hours per sub-

system. Once the high-level design is complete, an estimate

can be made similarly by using the number of modules and the

average hours per module. As modules that can be reused

from other systems are identified, this estimate can be

refined. Table 4-1 lists values for these measures derived

from SEL data.

During development, the expenditures to date can be compared

with the life cycle effort model (Table 4-2) to project the

cost to complete the system. As shown in Table 4-2, the

proportion of the total activity required for each life

cycle phase is relatively stable. Thus, the actual expend-

itures to date at the end of any phase can be assumed to

represent the corresponding percentage of the total expend-

itures required to complete development.

When will this system

be completed?

Weeks per subsystem per person

Weeks per module per person

Life cycle schedule model

Time elapsed to date

Modules per week

Lines of code per week

Modules per subsystem

Lines of code per module

An initial estimate of development time can be made by mul-

tiplying the number of weeks required per subsystem per per-

son by the number of subsystems, then dividing by the

projected staff level (number of persons). Once the high-

level design is complete, an estimate can be made similarly

by using the number of weeks required per module per person

and the number of modules. Table 4-1 lists values for these

measures derived from SEL data.

During development, the time elapsed to date can be compared

with the life cycle schedule model (Table 4-2) to project

the time required to complete the system. As shown in
_P

--5 '

9274

Table 4-2, the proportion of the total time required for
each life cycle phase is relatively stable. Thus, the time

elapsed to date at the end of any phase can be assumed to

represent the corresponding percentage of the total time

required to complete development.

Table 4-2. Life Cycle Effort/Schedule Model a

Life Cycle Phase

Requirements Analysis

Preliminary Design
Detailed Design

Implementation

System Testing

Acceptance Testing

Percent of
Total Schedule

Percent of

Total Effort

5 6

i0 8

15 16

40 45

20 20

l0 5

aBased on SEL experience.

The completion time for detailed design can be estimated by

dividing the number of modules remaining to be designed by

the current module design rate (modules per week). The com-

pletion time for implementation can be estimated by dividing

the number of lines of code remaining to be produced by the

current software production rate (lines of code per week).

Is this project on • Stability of plans and staff

schedule? • Computer utilization

• Software production

• Staffing expenditures

Periodic reestimation of software size, cost, and schedule

can necessitate changes in the development plan and person-

nel. Many such changes, however, can indicate that the

development team does not have a good grasp of the software

problem and is likely to fall farther behind in the future.

i

4-6

9274

Finishing a project on time depends on the development

team's doing the right thing, at the right time, fast enough

to stay on schedule. Measurements of computer utilization

and software production can suggest the type of activities

the development team is engaged in and how fast they are

working. Comparison of actual staff hours expended to date

with planned expenditures at this date can indicate whether

or not work is proceeding according to schedule.

Software production usually progresses at a constant rate

throughout implementation, as shown in Figure 4-2. Plotting

the percent completed of the total software estimated

against the percent of the schedule elapsed indicates proj-

ect status. A development project that starts producing

code before the expected start of implementation may be

working from an inadequate design. Too rapid code produc-

tion during implementation suggests that inadequate unit

testing is being performed. Slow code production results in

the project falling behind schedule. Figure 4-2 identifies

the regions of the software production graph associated with

these problems.

Computer utilization follows software production, increasing

constantly during implementation. Computer utilization

should, however, stabilize and then fall rapidly during

testing as tests are completed. Figure 4-3 shows this pat-

tern. Significant computer use during design (unless auto-

mated design tools are used) suggests that coding has

actually started too early. A low level of computer use

during implementation indicates that code production and/or

unit testing is behind schedule. A decline in computer

utilization at any time during implementation is a sign that

development has been interrupted. Any of these problems may

result in an integration crunch during testing when re-

sources are added to the project in an effort to complete

9274

4-7

100

90

80

UJ
O.

0
.J

m 70

tlJ

< 6O

g.

0

ci 50
UJ
I--
,<
:i
i
i-
¢n 40
ILl

LL.

O
I-
z 30
g,J

o
n.-
UJ
O,.

2O

10

DESIGN

I
0 10 20

IMPLEMENTATION TEST

I
I-
I
I

I
I
I
I
i
I
I
I
I
I
I
I
i
I
I #
, 2

t _ _
I I #

I #
I
I

I
I
I
I i i

30 40 50 50 70 80

/

PERCENT OF ESTIMATED SCHEDULE ELAPSED

I
9O

I
100

o'l

p.
tN

_

Figure 4-2. Nominal Software Production Pattern

I-.

I.-

z
_o
I-
<
l-
z
ILl

U4

O.

z
co
u)
LU

• l | I

]003 -IO :INn O]dO'1]A]O U:Id]SN l:l:11rldlN03

o

_o
t_

o

N

-_l
o

o

u

,--I

.,.4

0
Z

I

-,-I

4-9

it on schedule. Figure 4-3 identifies the regions of the

computer utilization graph associated with these phenomena.

How much will this s_stem • Development cost
cost to maintain? • Percent of reused code

• Implementation error rate

• Testing error rate

• Effort to change

The annual cost of software maintenance is about 25 percent

of the development cost (Reference 39). However, any given

project may cost more or less than that to maintain. A high

error rate (errors per thousand lines of code) during imple-

mentation and/or testing suggests that a system will cost

more than usual to maintain. The effort to change (hours

per change) measured during development is another indicator

of relative maintenance cost.

How reliable will this •

software be?

Implementation error rate

Testing error rate

Software change rate

Number of requirements changes

The implementation and testing error rates (errors per

thousand lines of code) provide the first indications of the

reliability of the delivered software product. During test-

ing, the error rate should peak and begin declining. Fail-

ure of the error rate to decline during testing suggests

that many undiscovered errors remain in the software. Late

requirements changes can also introduce errors and incon-

sistencies into the system. Some of these effects can be

traced in the software change rate.

The software change rate cannot be measured until implemen-

tation, when software production begins. Development tech-

niques such as configuration control and online development

affect the overall change rate. The cumulative change rate

should, however, increase steadily throughout implementation

and testing as shown in Figure 4-4. A static (level) change

9274

4 -i0

\

\

3000 =10 S3NI'I 7V101 U=ld S=IgNVH0

/I,/.

J_

..la

o

,--4

.,-t

o
Z

I

_J

.el

4-11
j_

rate indicates that testing and error correction are pro-

ceeding too slowly. A rapid increase in the cumulative

change rate suggests that the software is unstable; that the

developers are making ill-considered and possibly contra-

dictory changes, perhaps in response to sudden requirements

changes. Figure 4-4 identifies the regions of the software

change graph associated with these problems.

4.2 REVIEW AND ASSESSMENT

Throughout the software life cycle, the development team

produces and delivers products that eventually make up the

completed software system. The manager must evaluate each

of these products as well as the team's overall performance.

This section addresses those questions that can be asked

about the quality of requirements, design, software, test-

ing, documentation, and performance. Table 4-3 lists nomi-

nal values for some applicable measures based on SEL data.

The specific uses of these measures are discussed below.

Are the requirements • To be determined items (TBDs)

complete? • TBD rate
• Severity of TBDs

Although there is no set of measures that answers this ques-

tion directly, experience shows that the number and type of

"to be determined" items (TBDs), as well as the rate of

change in the TBDs are very strong indicators of the com-

pleteness of requirements. Any set of requirements will

contain some TBDs, but an excessive amount can indicate

trouble. An increase in the number of TBDs near the time

when requirements are due to be completed is an even

stronger indication that more work must be done before pre-

liminary design can begin. Such an increase is interpreted

as a sign that more weaknesses in the requirements are un-

covered as they are looked at more closely. An assessment

of the completeness of requirements must also incorporate

the severity of TBDs. TBDs in specific algorithms and

4-12

9274

Table 4-3. Measures for Assessment

Product
Nominal a

Measure Value

Requirements

Design

Software b

Testing

Documentation

Performance

TBDs per subsystem 3

Questions per subsystem 8

ECRs per subsystem 5

Internal interfaces not defined (%) 5

External interfaces not defined (%) 5

Modules not defined (%) 5

Errors per thousand developed 7

lines of code

Changes per thousand developed 14

lines of code

Effort to repair (hours) 8

Effort to change (hours) 8

Modules affected per change 1

Module coverage (%) i00

Function coverage (%) i00

Errors per thousand developed 3
lines of code

Pages per module 2

Checklist completeness (%) i00

Developed lines of code per staff
hour 3

Schedule changes 5c

Reused code (%) 30

Estimate Changes 5c

aBased on SEL historical data for flight dynamics software.

bMeasured during implementation.

COnce per phase and build.

9274

4-13

tolerances, for example, are much less critical than TBDs in
external interface formats and operational constraints

(e.g., memory, timing, data rate).

Are the require- • To be determined items (TBDs)

ments accurate? • Engineering change requests (ECRs)

Much effort has been expended by research organizations

(including the SEL) to develop specific approaches and meas-

ures for assessing the completeness and accuracy of software

requirements. Success to date has been very limited. Ap-

proaches such as traceability matrices, requirements lan-

guages, and cross-check tables have not been fully effective.

At this time, two of the more reliable measures for deter-

mining the accuracy of software requirements are the number

of TBDs listed in the requirements and the number of engi-

neering change requests (ECRs) generated during the require-

ments analysis phase. Exceptionally large values for these

parameters can indicate that the requirements need to be

redeveloped.

Is the design • Number of modules not identified

complete? • Number of modules not defined
• Number of module interfaces not defined

• Number of external interfaces not defined

Although the definition of the design activity and corre-

sponding criteria can vary from environment to environment,

the informational content of a complete design is relatively

standard. Four basic measures of design completeness are

generally applicable. The structure chart must identify all

modules (software items) to be produced. Processing de-

scriptions (PDL or prologs) must be provided for all mod-

ules. Interfaces among modules (e.g., calling sequences and

COMMON blocks) must be defined. All external interfaces

must be defined to the bit level. It is not always possible

to specify all of these items before starting implementa-

tion. However, cou_ting the number of TBDs in each area

9274

4-14

provides a good measure of design completeness. More than

5 percent TBDs in any area is an indication that the design

is not ready and implementation should be postponed.

Is the design effective • Module strength

(relatively the best)? • Module coupling
• External I/O isolation

No reliable objective measures of design quality have been

identified. However, three subjective measures have been

found to be useful in this context. These measures can be

determined only by inspecting the module process descrip-

tions, although efforts continue to develop corresponding

automatable measures. High module strength (singleness of

purpose) produces a relatively high-quality design when

maintainability and robustness are concerns. Another rele-

vant measure is module coupling (interdependence). Many

interdependencies make changes to the software difficult and

error prone. The degree of external I/O isolation is the

number of modules accessing external files. Ideally, only

one module should access each file. Failure to isolate

external I/O activities often leads to lower reliability.

Is the software too complex • Effort to change

(or is it modular)? • Effort to repair

• Modules affected per change

• Module strength

• Module coupling

Although numerous analytic measures have been proposed as

straightforward means of determining the complexity of soft-

ware, the SEL has been unable to verify their effectiveness

in this application (see Section 3.2). Measures that have

not proved effective include module size (average lines of

code per module), cyclomatic (and central) complexity, and

Halstead measures. Many successful software developers

believe that smaller modules are generally less complex than

larger ones, and therefore better. SEL research has not,

9274

4 -15

however, shown any direct correlation between module size

and cost or reliability (Reference 37).

Based on SEL experience, the most effective measures of

software complexity and modularity are the effort required

to make a change, the effort required to repair an error,
and the number of modules affected by a change. Simple

modular development will minimize these quantities. Values

for these measures can be determined during implementation

by monitoring changes and errors. The most reliable measure

of software complexity and modularity, however, is the judg-

ment of an experienced software development manager. This

judgment may be based on an assessment of module strength

(singleness of purpose) and module coupling (interdepend-
ence) as well as knowledge of the application area and simi-

lar systems.

Is the software maintain- • Effort to change

able? • Effort to repair

• Modules affected per change

• Errors outstanding

Because software maintenance is often the most expensive

phase of the software life cycle, it is important that the

completed software be easy to maintain. Low complexity and

good modularity facilitate maintenance, so some of the rel-

evant measures are the same. Effort required to make a

change, effort required to repair an error, and number of

modules affected by a change are good indicators of the rel-

ative difficulty and cost of software maintenance. Lower

values for these measures imply better maintainability.

Another useful measure is the number of errors outstanding.

Errors are discovered throughout the software life cycle

and, after some delay, are repaired. When the rate of

discovery exceeds the rate of repair during maintenance, it

9274

4 -16

may be time to redevelop or replace the software. This

measure may indicate the end of the software life cycle.

Is the software reliable? • Error rate

• Change rate

• Modules affected per change

The basic measure of software reliability is how often the

software fails. It depends on the number and severity of

errors. However, other indicators are also important in

deciding how much confidence can be placed in a software

system. The three measures relied on by the SEL are as

follows:

i. Errors'per thousand lines of code--This quantity,

measured during system and acceptance testing, can

be compared with values from previous systems to

determine relative reliability. An error rate in

excess of 3 per i000 developed lines identifies an

unreliable system. Furthermore, any increase in

the error rate late in development indicates a

problem with system reliability.

2. Changes per thousand lines of code--This quantity,

measured during system and acceptance testing, can

identify reliability problems. Although some

changes may be requirements changes or clarifica-

tions, a high change rate usually indicates future

unreliability.

3. Number of modules affected per change--Highly

coupled software tends to propagate errors and

confound change attempts. A high value for this

measure indicates that maintenance will be diffi-

cult and reliability will be low.

Although many comprehensive reliability models have been

developed and occasionally successfully applied, SEL

4-17

9274

experience (Reference 37) suggests that they are not very

effective in the Flight Dynamics environment.

Is system testin 9 complete • Function coverage

(or adequate)? • Module coverage
• Error discovery rate

The two basic approaches to software testing are functional

and structural. Functional testing attempts to maximize the

number of functional capabilities tested based on the de-

scription of functionality contained in the requirements

specification. Structural testing attempts to maximize the

number of software structures tested without regard for

functionality. Approximate measures corresponding to these

approaches are function coverage and module coverage.

Function coverage is the percentage of functions identified

in the requirements that are exercised during system and

acceptance testing. Module coverage is the percentage of

modules and other software components that are exercised

during system and acceptance testing. An effective test

plan will exercise 100 percent of the functions and modules.

It is not, however, generally possible to test every line of

code or every path through the system. SEL research indi-

cates that good functional testing may exercise only 70 per-

cent of the code, but that has proven to be adequate

(Reference 40). The number of individual tests defined in

the test plan is not a good measure of test completeness.

The error discovery rate can also indicate when sufficient

testing has been done. Failure of this rate to decline

toward the end of planned testing suggests that more testing

needs to be done. The error discovery rate during mainte-

nance and operation will be the same as at the end of test-

ing unless additional effort is expended to find and correct

errors.

9274

4 -18

Is the documentation appropriate? • Pages per module

• Checklist completeness

• Subjective assessment

• Expected lifetime

Much useful documentation is generated as an intrinsic part

of the software development process (e.g., design descrip-

tion). However, any nontrivial system will require addi-

tional documentation to support users after development is

complete. This documentation must support both maintenance

(by programmers) and operation (by users). In the flight

dynamics environment studied by the SEL, this information is

frequently presented in two separate documents, a system

description and a user's guide.

The amount and formality of documentation required depends

on the size and expected lifetime of the system. Generally,

about two pages of documentation per module should be pro-

duced. Excessive documentation can be as awkward as in-

sufficient documentation. Long-lived systems need more

detailed and formal documentation. Short-lived systems need

only minimal documentation. Document completeness can be

determined by comparison with a checklist of standard con-

tents. Realistically, document quality can only be deter-

mined by a subjective assessment.

Is the product cost effective? Productivity

Reused code

Error rate

Effort to change

Effort to repair

The cost effectiveness of a product is a function of its

initial cost to develop and subsequent cost to maintain.

Although often criticized as an inadequate measure of pro-

ductivity, SEL experience indicates that the measure "lines

of code developed per staff hour expended" is a reliable way

of evaluating the cost effectiveness of development when

consistent historical data are available for comparison.

9274

4 -19

Lines of code and hours charged must, however, be clearly

defined. Another measure of the cost effectiveness of de-

velopment is the percentage of reused code in the new sys-

tem. Reusing previously developed code costs only
20 percent as much as developing new code.

The error rate (errors per thousand lines of code), effort

required to make a change, and effort required to repair an

error, are good indicators of maintenance cost. A system

that has few errors and that is easily modified will be in-

expensive to maintain. Low maintenance and development

costs characterize a cost-effective product.

Team performance during development can be monitored by

plotting cumulative productivity. The starting point of the

cumulative productivity graph depends on the amount of re-

used code. Figure 4-5 shows the productivity pattern for a

project reusing up to 15 percent of code. In the figure,

productivity increases steadily throughout implementation.

A very rapid increase in productivfty suggests that software

is being developed without adequate unit testing. Too slow

an increase implies that development is falling behind

schedule.

Extensive reuse of existing code raises the starting level

of cumulative productivity, and thus its path may be level

or even declining during implementation. In all cases,

however, productivity should be level or should decline

slightly during testing. If productivity continues to

increase instead, implementation is not complete; coding is

still in progress. A sharp decline in productivity during

testing reflects an integration crunch when resources are

added to the project in an effort to complete it on sched-

ule. Figure 4-5 identifies the regions of the cumulative

productivity graph associated with these phenomena.

9274

4-20

,I"

0

z
UL
LL

I--

I.Q

i,M
_3
0
CJ
u.

0

w
z_

I--
0
p.

IMPLEMENTATION INCOMPLETE

IMPLEMENTATION

INTEGRA T;ON CRUNCH

TESTING

I I I I ! I

40 50 eO 70 80 90 100

PERCENT OF SCHEDULE ELAPSED

Figure 4-5. Nominal Productivity Pattern

4-21

w •

Is staffing at the right level? • Staffing profile
• Schedule changes

• Estimate changes

• Code production rate

Two major concerns of a software development manager are the

team's size and its capabilities. The first concern is

usually whether the team size is optimum--neither too many

nor too few members. Two effective measures in this regard

are the size of departures from the planned staffing profile

(perhaps a Rayleigh curve) and the frequency of schedule and

milestone changes.

Departures from planned staffing usually indicate that pro-

duction will depart from plan, too. Unless major changes

are made to the system requirements, schedules and mile-

stones should be adjusted only once at the end of each life

cycle phase. Frequent changes in size and cost estimates

can imply that the estimates are being adjusted to fit an

inappropriate staffing level or that the skill mix of the

development team is inappropriate to the task.

During implementation, the code production rate (lines of

code per month) can be used to project the completion date

of development (see Section 4.1). Staff can be added or

subtracted to make that date match the schedule. Rarely

does individual productivity change during development, so

the manager should not expect to change the team production

rate except by altering the staff level and/or skill mix.

4.3 EVALUATION AND SELECTION

During the software development process as well as during

predevelopment planning, the manager must select the tools,

practices, and techniques most appropriate to the specific

software development project in progress. Measures facili-

tate the comparison of the ongoing project with previous

projects and highlight any special considerations. The

9274

4 -22

process of evaluating the overall cost effectiveness of in-

dividual technologies is not considered here.

This section addresses the use of measures to evaluate and

select appropriate strategies for a planned or ongoing soft-

ware development project. The major areas of concern are

development methodology, testing approach, team organiza-

tion, and level of standards.

Which methodolo@y is appropriate? • Percent reused code

• Number of external

files

• Similarity to past

projects

• Team experience

• Size of project

A methodology can consist of one or more integrated tools,

techniques, and practices. Methodologies provide the devel-

opment team with a common form of communication and organize

its activities into integrated cooperative subactivities.

Many different methodologies are used in the software engi-

neering community. The general class of "structured" tech-

niques is probably the most widely employed. SEL experience

with over 40 flight dynamics projects has identified five

principal measures relevant to selecting an appropriate

software development methodology.

The percent of reused code is an important consideration

when deciding that top-down design, coding, and testing are

to be used. The SEL has found the strict application of

"top-down" techniques to be less effective as the percent of

reused code (or design) increases.

Another relevant parameter is the number of external files

defined for the project. A large number of external files

indicatesthat the software is "data processing" rather than

"computational." The use of a structured desi@n or struc-

tured analysis methodology has been found to be more valu-

able with data processing systems.

4-23

9274

/

Another consideration is the similarity to past projects.

The SEL has found that, as the similarity to past projects

increases, the need for a completely structured development

methodology decreases. New project types require a much

more disciplined development approach.

A fourth useful measure is the relative experience of the

development team. Although an experienced team does not

always use a very structured and disciplined methodology,

the SEL has found that an experienced team will automati-

cally select an effective approach. On the other hand, a

less experienced team should employ a single well-defined

(typically structured) methodology.

Project size is also a major consideration when selecting a

methodology. The manager will find that less formal, less

structured methodologies are very workable for smaller proj-

ects (e.g., less than 2 or 3 staff-years). However, larger

projects (especially those greater than 5 or 6 staff-years

of effort) need the discipline of a structured approach.

What testing approach should

be employed?

Size of project
Percent reused code

Reliability

requirements

Software testing and verification can consume the major

portion of development resources. Consequently, a testing

strategy must be selected with care. There are two general

approaches to testing software: functional and structural

(see Section 4.2). These can be implemented by an independ-

ent test team or the development team. The independent test

team often assumes a verification role early in the develop-

ment process, in which case it is referred to as an inde-

pendent verification and validation (IV&V) team. Although

the extent of testing is obviously a function of the soft-

ware reliability requirements, several other measures also

9274

4 -24

may help in selecting the most appropriate approach to sys-

tem testing.

Size and required reliability are the important determinants

of whether or not the IV&V approach is worthwhile. For

projects with average reliability requirements, IV&V is ef-

fective only for those projects greater than 20 staff-years

of effort. IV&V is cost effective, however, for any project

with an exceptionally high reliability requirement.

Although the projects studied by the SEL produced generally

successful (reliable) software with the application of func-

tional testing, some experiments indicated that for unusu-
ally high reliability requirements the structural (statement

and path coverage) approach may be more appropriate. The

selection of testing approach also depends on the percent of

reused code. Above 30 percent, functional testing seems to

be fully adequate.

What team organization is

appropriate?

• Size of project

• Team experience

• Similarity to past

projects

• Percent reused code

There are many general structures into which a software de-

velopment project can be organized. The most common organi-

zation is the chief programmer team (CPT). In addition, the

project can be subdivided into functional teams (e.g., qual-

ity assurance). The principal alternatives to CPT are fluid

organizations such as the democratic team. The best organi-

zation for a given project depends on a number of factors.

The most important of which is that the smaller the team,

the better (Reference 41). Whenever possible, every team

member should be assigned full time.

Project size is the principal criterion for deciding whether

or not separate quality assurance or configuration control

4-25

9274

teams are called for. If a project is less than 12 to 15

staff-years, it probably will not be cost effective to or-
ganize it into separate groups with these responsibilities.

Team experience is the principal criterion when deciding

whether or not a CPT should be applied. SEL experience in-

dicates that projects with very experienced personnel have
not derived any benefit from CPT. On the other hand, teams

with average or less than average experience with the speci-
fic application can benefit from CPT. However, the success-

ful use of CPT requires an application expert with a natural

capability for the chief programmer role.

Two other considerations when selecting the team structure

are the similarity to past projects and percent of reused

code. SEL experience shows that as these measures increase

(higher similarity and higher percent of reused code), the

need for the CPT organization and the need for independent

functional organizations responsible for quality assurance

and configuration control decrease.

What type and levels of standards

should be applied?

Size of project

Schedule changes

Change rate
Error rate

Similarity to past

projects
Percent reused code

Whether they are called standards, guidelines, policies, or

something else, some such set of written development prac-

tices must be prescribed for every project. SEL experience

with flight dynamics projects shows that, as projects in-

crease in size, the need for design, coding, and implemen-

tation standards also increases. Projects of less than

2 staff-years can be completed quite satisfactorily with

minimum written standards.

Three other measures can inaicate a need for a change in the

level of standards during development. If the error rate,

4-26

-- 9274

change rate, or frequency of schedule changes increases, the

manager should reconsider the level and type of development

standards being applied. Policies should be revised or en-

forced more strongly if these measures indicate problems.

Finally, projects with a high percent of reused code and

high similarity to a past project often benefit from a flex-

ible set of design, code, and test standards.

4-27

9274

SECTION 5 - CONCLUSIONS

The preceding sections showed that a wide range of software

development measures are available to the software practi-

tioner. Some have important applications. The SEL has ar-

rived at the following general conclusions:

• Explicit measures are very effective for some soft-

ware development characteristics.

• Although analytic measures seem promising and are

intellectually appealing, their practical value has

not been demonstrated.

• Subjective measures are an effective means of char-

acterizing software quality.

Substantial work remains to be done in all of these areas.

Formulation, evaluation, and application of measures is a

continuous activity that contributes to and profits from a

growing understanding of the software development process.

A _omprehensive system of measurement is a necessary prereq-

uisite to any effort to evaluate or improve the software

development process and the available software engineering

technologies (References 42 and 43). This document will be

revised and extended as more is learned about measures.

Currently, the SEL is making a major effort to identify

measures of software size and complexity that can be applied

early in the software life cycle (during requirements and

design). The SEL is also attempting to automate the meas-

urement process throughout the software life cycle. The

ultimate goal of these activities is to produce a management

tool that will monitor the progress of a software project

and compare it with a historical data base of similar proj-

ects, thus allowing the manager to ask and answer questions

such as those discussed in this document. Reference 44 ex-

plains these concepts in more detail.

5-1

9274

REFERENCES

i. V. R. Basili, editor, Models and Metrics for Software

Management and Engineering, New York: Computer Socie-
ties Press, 1980

2. Software Engineering Laboratory, SEL-81-101, Guide to

Data Collection, V. E. Church, D. N. Card, and

F. E. McGarry, August 1982

3. --, SEL-81-104, The Software Engineering Laboratory,

D. N. Card, F. E. McGarry, G. Page, et al., February 1982

4. --, SEL-82-001, Evaluation of Management Measures of

Software Development, G. Page, D. N. Card, and
F. E. McGarry, September 1982, Volumes 1 and 2

5. --, SEL-82-005, Glossary of Software Engineering Labora-

tory Terms, M. R. Rohleder, December 1982

6. C. E. Walston and C. P. Felix, "A Method of Programming

Measurement and Estimation," IBM Systems Journal,

January 1977

7. V. R. Basili, "Product Metrics," Models and Metrics for

Software ManageMent and Engineering. New York: Com-

puter Society Press, 1980

8. M. H. Halstead, Elements of Software Science.

New York: Elsevier North-Hollard, 1977

9. Software Engineering Laboratory, SEL-78-102, FORTRAN

Static Source Code Analyzer Program (SAP) User's Guide

(Revision i), W. J. Decker and W. A. Taylor, September
1982

10. A. Fitsimmons and T. Love, "A Review and Evaluation of

Software Science," ACM Computing Surveys, March 1978

ll. V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software

Science Revisited: A Critical Analysis of the Theory

and Its Empirical Support," IEEE Transactions on soft-

ware Engineering, vol. 9, no. 2, March 1983

12. N. S. Coulter, "Software Science and Cognitive Psychol-

ogy," IEEE Transactions on Software Engineering, vol. 9,

no. 2, March 1983

13. T. J. McCabe, "A Complexity Measure," IEEE Transactions

on Software Engineering, December 1976

R-I

9274

14. T. Gilb, Software Metrics.

lishers, 1977

Cambridge: Winthrop Pub-

15. G. Myers, "An Extension to the Cyclomatic Measure of

Program Complexity," ACM SIGPLAN Notices, October 1977

16. W. Curtis, S. B. Sheppard, and P. Milliman, "Third Time

Charm: Stronger Prediction of Programmer Performance by

Software Complexity Metrics," Proceedin@s: 4th Interna-

tional Conference on Software En@ineerin@. New York:
Computer Society Press, 1979

17. A. L. Baker and S. H. Zweben, "A Comparison of Measures

of Control Flow Complexity," IEEE Transactions on Soft-

ware En@ineerin@, vol. 6, no. 6, November 1980

18. M. Evangelist, "Software Complexity Metric Sensitivity

to Program Structuring Rules and Other Issues in soft-

ware Complexfty," Sixth Minnowbrook Workshop on Software

Performance Evaluation, July 1983

19. W. Hansen, "Measurement of Program Complexity by the

Pair (Cyclomatic Number, Operator Count)," ACM SIGPLAN

Notices, March 1978

20. J. L. Elshoff, "Analysis of Some Commercial PL/I Pro-

grams," IEEE Transactions on Software En@ineering,

vol. SE-2, June 1976

21. W. Harrison, K. Magel, et. al., "Applying Software Com-

plexity Metrics to Program Maintenance," IEEE Computer,

September 1982

22. S. Henry and D. Kafura, "Software Structure Metrics
Based on Information Flow," IEEE Transactions on Soft-

ware En@ineerin 9, vol. 7, no. 5, September 1981

23. J. A. McCall, P. K. Richards, and G. F. Walters,
RADC-TR-77-369, Factors in Software Quality, Rome Air

Development Center, vol. i, November 1977

24. R. C. San Antonio, Jr., and K. L. Jackson, "Application

of Software Metrics During Early Program Phases," Pro-

ceedin@s of the National Conference on Software Test and
Evaluation, February 1983

25. J. A. McCall and M. A. Herndon, "Measuring Quality Dur-

ing Software Maintenance," Sixth Minnowbrook Workshop on
Software Performance Evaluation, July 1983

9274

R-2

26. J. Post, "Software Quality Metrics for Distributed Sys-
tems," Proceedings of the Sixth Annual Software Engi-

neering Workship, SEL-81-013, December 1981

27. G. J. Myers, Reliable Software Through Composite Design,
New York: Petrocelli/Charter, 1975

28. R. D. Cruickshank and J. E. Gaffney, "Measuring the

Software Development Process: Software Design Coupling

and Strength Matrices," Proceedings From the Fifth An-

nual Software Engineering Workshop, SEL-80-006, November
1980

29. B. A. Sheil, "The Psychological Study of Programming,"

ACM Computing Surveys, vol. 13, no. i, March 1981

30. V. R. Basili, "Evaluating Software Development Charac-
teristics: Assessment of Software Measures in the Soft-

ware Engineering Laboratory," Proceedings of Sixth

Annual Software Engineering Workshop, SEL-S1-013,
December 1981

31. V. R. Basili and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981

32. J. W. Bailey and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of

the Fifth International Conference on Software Engineer-

ing, New York: Computer Society Press, 1981

33. D. N. Card, "Early Estimation of Resource Expenditures

and Program Size," Computer Sciences Corporation, Tech-

nical Memorandum, June 1982

34. G. Hislop, "Some Tests of Halstead Measures" (paper pre-

pared for the University of Maryland, December 1978)

35. S. F. Lange, "A Child's Garden of Complexity Measures"

(paper prepared for the University of Maryland, December

1978)

36. V. R. Basili and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Labora-

tory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Qualit_ Metrics, March 1981

37. F. E. McGarry, "What Have We Learned in 6 Years?", Pro-

ceedin@s of the Seventh Annual Software Engineering

Workshop, SEL-82-007, December 1982

ii

R-3

92 4

/

38. Software Engineering Laboratory, SEL-81-105, Recommended

Approach to Software Development, F. E. McGarry,

G. Page, S. Eslinger, et al., April 1983

39. --, SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., January 1984

40. J. A. Ramsey and V. R. Basili, "Structural Coverage of

Functional Testing," Proceedings of the Eighth Annual

Software Engineering Workshop, SEL-83-007, November 1983

41. R.C. Tausworthe, "Staffing Implications of Software

Productivity Models," Proceedings of the Seventh Annual

Software Engineering Workshop, SEL-82-007, December 1982

42. W. W. Agresti, F. E. McGarry, D. N. Card, et al.,

"Measuring Software Technology," Program Transformation

and Programming Environments. New York: Springer-

Verlag, 1984

43. D. N. Card, F. E. McGarry, and G. Page, "Evaluating

Software Engineering Technologies in the SEL,"

Proceedings of the Eighth Annual Software Engineering

Workshop, SEL-83-007, November 1983

44. Software Engineering Laboratory, SEL-83-006, Monitoring

Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

9274

R-4

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-

neering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May

1977

SEL-77-002, Proceedin@s From the Second Summer Software En-

gineerin 9 Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu

and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design

and Module Descriptions, E. M. O'Neill, S. R. Waligora, ana
C. E. Goorevich, February 1978

ISEL-78-002, FORTRAN Static Source Code Analyzer (SAP)

User's Guide, E. M. O'Neill, S. R. Waligora, and

C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Pro@yam

(SAP) User's Guide (Revision i), W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,

K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-II/70 user's Guide, D. S. Wilson and B. Chu, September

1978

9274

B-I

SEL-78-005, Proceedings From the Third Summer Software Engi-

neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements

Analysis StudY, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,

M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine_ Farber, and Gordon Pro-

gram Design Language (PDL) in the Goddard Space Flight Cen-

ter (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-

gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for

Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

ISEL-80-004, System Description and User's Guide for Code

580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-

scription and User's Guide (Revision i), W. Decker and
W. Taylor, December 1982

SEL-80-005, A Study of the Musa Reliability Model,

A. M. Miller, November 1980

B-2

9274

SEL-80-006, Proceedings From the Fifth Annual Software Engi-

neerin_ Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

1SEL-81-001, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

ISEL-81-002, Software Engineering Laboratory (SEL) Data

Base Organization and User's Guide, D. C. Wyckoff, G. Page,

and F. E. McGarry, September 1981

SEL-81-102, Software Engineering Laboratory (SEL) Data Base

Organization and User's Guide Revision i, P. Lo and
D. Wyckoff, July 1983

lSEL-81-003, Data Base Maintenance System (DBAM) User's

Guide and System Description, D. N. Card, D. C. Wyckoff, and
G. Page, September 1981

SEL-SI-103, Software Engineering Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo and D. Card, July 1983

ISEL-81-004, The Software En@ineerin@ Laboratory,

D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

1SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

1SEL-81-105, Recommended Approach to Software Development,

S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-S1-205, Recommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-81-006, Software Engineering Laboratory (SEL) Document

Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

ISEL-81-007, Software Engineering Laboratory (SEL) Com-

pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

B-3

9274

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase i Evaluation, W. J. Decker and F. E. McGarry,

March 1981

lSEL-81-010, Performance and Evaluation of an Independent

Software Verification and Integration Process, G. Page and

F. E. McGarry, May 1981

SEL-SI-II0, Evaluation of an Independent Verification and

Validation (IV&V) Methodology for Flight Dynamics, G. Page

and F. McGarry, December 1983

SEL-81-011, Evaluating Software Development by Analysis of

Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. O.

Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-

neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering

Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation of Management Measures of software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program

(SAP) System Description, W. A. Taylor and W. J. Decker,

August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User s Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers:

ume i, July 1982

Vol-

ISEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

B-4

-- 9274

SEL-82-I05, Glossary of Software Engineering Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

ISEL-82-006, Annotated Bibliography of Software Engineer-

ing Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-I06, Annotated Bibliography of Software Engineering

Laboratory Literature, D. N. Card, T. A. Babst, and
F. E. McGarry, November 1983

SEL-82-007, Proceedings From the Seventh Annual Software

Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., January 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., January 1984

SEL-83-003, Collected Software Engineering Papers: Vol-

ume II, November 1983

SEL-83-004, SEL Data Base Retrieval System (DARES) User's

Guide, T. A. Babst and W. J. Decker, November 1983

SEL-83-005, SEL Data Base Retrieval System (DARES) System

Description, P. Lo and W. J. Decker, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-

gineering Workshop, November 1983

SEL-RELATED LITERATURE

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Program Transformation and Pro-

gramming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

9274

B-5

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

3Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,

January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-

ment and Estimation," University of Maryland, Technical Mem-

orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?", Journal df Systems and Software, February 1981,

vol. 2, no. 1

3Basili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

2Basili, V. R., and B. T. Perricone, Software Errors and

Complexity: An Empirical Investigation, University of

Maryland, Technical Report TR-II95, August 1982

3Basili, V. R., and T. Phillips, "Evaluating and Com-

paring Software Metrics in the Software Engineering Labora-

tory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Qualit_ Metrics, March 1981

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric

Analysis and Data Validation Across FORTRAN Projects," IEE____EE

Transactions on Software Engineering, November 1983

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedings of the workshop

on Quantitative Software Models for Reliability, Complexity

and Cost, October 1979

2Basili, V.R., and D. M. Weiss, A Methodology for Col-

lecting Valid Software Engineering Data, University of
Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedings of the Software Life

C[cle Management Workshop, September 1977

9274

B-6

3Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second

Software Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment,"

Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedings of the Third Interna-

tional Conference on Software En@ineerin 9. New York: Com-

puter Societies Press, 1978

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research,

August 1977

2Card, D. N., "EMrly Estimation of Resource Expenditures

and Program Size," Computer Sciences Corporation, Tech-

nical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Tech-

niques for Resource Estimation," Computer Sciences Cor-

poration, Technical Memorandum, November 1982

Card, D. N., and V. E. Church, "Analysis Software Require-

ments for the Data Retrieval System," Computer Sciences

Corporation Technical Memorandum, March 1983

Card, D. N., and V. E. Church, "A Plan of Analysis for

Software Engineering Laboratory Data," Computer Sciences

Corporation Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder, "Report of Data Expansion

Efforts," Computer Sciences Corporation, Technical Memoran-

dum, September 1982

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceed-

in@s of the Fifth International Conference on Software

En@ineerin_. New York: Computer Societies Press, 19sl

2Doerflinger, C. W., and V. R. Basili, "Monitoring Soft-

ware Development Through Dynamic Variables," Proceedings of

the Seventh International Computer Software and Applications
Conference. New York: Computer Societies Press, 1983

Freburger, K., "A Model of the Software Life Cycle" (paper

prepared for the University of Maryland, December 1978)

9274

B-7

Higher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also

designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-

pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"

(paper prepared for the University of Maryland, December

1978)

McGarry, F. E., G. Page, and R. D. Werking, Software Devel-

opment History of the Dynamics Explorer (DE) Attitude Ground

Support System (AGSS), June 1983

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December

1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), Mar--{_

1980

Page, G., "Software Engineering Course Evaluation," Computer

Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report

Form," NASA, Goddard Space Flight Center, Technical Memoran-

dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and

Management of Software Complexity" (paper prepared for the

University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher

Order Languages Study: Addendum," Martin Marietta Corpora-

tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

c---_on, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research

Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

9274

B-8

3Zelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science.

New York: Computer Societies Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedin@s of the Soft-

ware Life Cycle Mana@ement Workshop, September 1977

1This document superseded by revised document.

2This article also appears in SEL-83-003, Collected Soft-

ware En@ineerin@ Papers: Volume II, November 1983.

3This article also appears in SEL-82-004, Collected Soft-

ware Engineerin @ Papers: Volume I, July 1982.

B-9

9274

INDEX OF MEASURES

analytic

2-3 to 2-10, 3-4 to 3-7, 5-1

changes

see estimate changes, requirements changes,

schedule changes, and software changes

computer utilization
4-7

control structure

2-7

cost

see effort to develop

coverage

see function coverage and-module coverage

cyclomatic complexity

2-7, 2-8, 3-1, 3-4, 3-7

aata structure

2-8

decisions

see cyclomatic complexity

design

4-14, 4-15

design production rate
4-6

developed lines of code

2-1

development time

3-3, 4-5

documentation

see pages of documentation

duration

see development time

effort to develop

3-1, 3-3, 3-5, 4-3, 4-10

9274

I-i

effort to change
4-15, 4-16, 4-20

effort to repair
4-15, 4-16, 4-20

engineering change requests
4-14

error rate
4-10, 4-17, 4-18, 4-20, 4-26

discovery
4-18

implementation
4-10

testing
4-10, 4-17

errors
3-1, 3-5, 4-16

errors per thousand lines of code
2-2, 4-17, 4-20

estimate changes
4-22

executable statements
3-5

explicit
2-1 to 2-3, 3-1 to 3-4, 5-1

external interfaces
4-14, 4-23

external I/O isolation
4-15

function coverage
4-18

Halstead measures
2-3 to 2-7, 3-4 to 3-6

length
2-4, 3-6

volume
2-4

I-2

9274

level
2-4

effort
2-4

faults
2-4

implementation
4-15

interfaces
see internal interfaces and external interfaces

internal interfaces
4-14

life cycle model
1-5, 4-5, 4-6

lines of code
3-1, 3-5
also see source lines of code and developed lines of code

lines of code per staff hour
2-2, 4-19

maintainability
4-10, 4-16

McCaDe measures
see cyclomatic complexity

McCall measures
2-10

measurement
1-3, 1-6, 2-i

modularity
2-12, 4-15, 4-16

module coverage
4-18

module coupling
2-12, 4-15

9274

I-3

modules
4-3, 4-14

modules affected per change
4-15, 4-16, 4-17

module size

4-3

module strength

2-12, 4-15

Myers measures

see module strength and module coupling

operands

2-3, 3-6

operators

2-3, 3-6

pages of documentation

4-19

production rate

see design production rate and software production rate

productivity
4-20

program size

2-3

quality

2-10, 3-9

reference span

2-8, 2-9

reliability

4-10, 4-17

requirements

4-12, 4-24

requirements changes
4-10

9274

I-4

reused code
4-3, 4-20, 4-23 to 4-27

schedule changes
4-6, 4-22, 4-26

size
see module size, program size, subsystem size, and
system size

software changes
3-5, 4-10, 4-17, 4-26

software production rate
4-3, 4-7, 4-22

software science
see Halstead measures

source lines of code
2-1, 3-1, 3-3

staffing level
3-3, 4-22

subjective
2-10 to 2-13, 3-7 to 3-9, 5-1

subsystems
4-3

subsystem size
4-3, 4-5

system size
3-9, 4-3, 4-23 to 4-27, 5-1

technology use
4-23

testing

4-18, 4-24

tests

4-18

to be determined items (TBDs)

4-12

Walston and Felix

3-1 to 3-3

9274

I-5

